Direct product decomposition of zero-product-associative rings without nilpotent elements

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

Nilpotent Elements in Skew Polynomial Rings

 Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...

متن کامل

Homomorphic Images of an Infinite Product of Zero-dimensional Rings

Let R = Q a2A R a be an innnite product of zero-dimensional chained rings. It is known that R is either zero-dimensional or innnite-dimensional. We prove that a nite-dimensional homomorphic image of R is of dimension at most one. If each R a is a PIR and if R is innnite-dimensional, then R admits one-dimensional homomorphic images. However, without the PIR hypothesis on the rings R a , we prese...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

The Diameter of a Zero-divisor Graph for Finite Direct Product of Commutative Rings

This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product R1 × R2 × · · · × Rn with respect to the diameters of the zero-divisor graphs of R1, R2, · · · , Rn−1 and Rn(n > 2).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1978

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-39-2-219-223